查看: 2669|回复: 1

[转帖]饲料调质工艺与设备的讨论(续)二

[复制链接]
发表于 2006-10-27 23:48:20 | 显示全部楼层 |阅读模式

文章来源:饲料工业 作者:王永昌

  2 调质工艺与设备的发展过程
  饲料调质工艺与设备中对水和热作用的认识是逐步加深。所以,调质工艺与设备一直在发展,而且是形式繁多,虽然水和热处理对制粒和膨化的重要性,目前已得到了比较广泛的共识,使饲料水和热处理工序得到了空前的加强,调质效果明显提高。但至今饲料调质理论报道极少,大都是从宏观上和概念上来论说。这对调质效果优劣的分析难以确切。
  调质工艺和设备在20世纪50~60年代以前大都是给料和调质同轴组合,60年代末到70年代给料和调质就分开,80~90年代相继出现二、三级调质、等直径水平双筒调质、双筒差动调质和釜式调质、高压调质等多种调质工艺和设备,取得了不同的调质效果。从表面看各种调质工艺和设备基本都能符合制粒或膨化要求,实际上不同的调质工艺和设备,其调质的工艺参数(调质器转速、调质时间等)有所不同,为此调质熟化效果亦有较大的差别,不同的调质熟化效果来适应不同物料调质的要求。现作如下讨论。2.1 给料和调质同轴组合的调质工艺和设备
  20世纪50~60年代制粒机的给料是连续螺旋式的,调质是桨叶式的,由于给料量根据制粒的颗粒大小,给料量须变化,转速必需调速,但为了保证调质效果,调质器转速必须恒定,为此,两者不能兼顾。因而,给料和调质同轴组合的调质工艺其调质效果较差。为此,到60年代末到70年代初给料和调质同轴组合的调质工艺,就被给料和调质独立的工艺设备所取代。
  2.2 给料和调质分开的工艺和设备
  由于人们认识到给料和调质同轴组合的不利因素,所以,开始将给料和调质分开传动。此时,调质器的长度一般较短,略超过压制室和主传动的长度之和,一般在2 000mm以内。调质器直径一般在300~400mm以内,转速为200r/min左右,物料在停留调质器时间在15~30s以内。由于给料和调质功能已分工明确,调质器为桨叶,为此,物料调质效果改善,制粒后的淀粉的糊化度可达25%,所以,调质后的淀粉的糊化度亦能在15%~20%以内,并可添加多种液体。由于淀粉的糊化度不高,颗粒耐水性就差,因此该调质工艺只能用于禽畜饲料生产,而不能用于耐水要求较高的水产饲料。
  2.3 等直径水平双筒调质工艺和设备
  实际上两个单筒调质的组合,仅中间无筒壁,该结构使物料可相互翻动,部分桨叶反向旋转,延长物料在机内停留时间,增强了调质强度,机内停留时间最长达1min,淀粉的糊化度可达20%,调质器转速为100~200r/min,以内,调质器为桨叶。可添加多种液体,该机可用于禽畜饲料生产,亦能用于耐水性要求不高的鱼饲料生产。
  2.4 二、三级调质工艺和设备
  由于水产饲料耐水性特殊要求,为了增强调质器的调质效果,所以采用了加长二、三级调质工艺与设备,调质器长度达3 000~4 000mm。调质器直径仍在300~400mm左右,调质器为桨叶,桨叶排列形式多种。①前半桨叶与轴夹角成45°,后半桨叶与轴平行。②相邻两个桨叶与轴夹角成左旋右旋各75°。转速低速为100~200r/min高速为300r/min,由于增加了调质器长度,高速桨叶增强了调质强度。有些调质器为长筒体还进行保温以减少热量无形损耗,物料在机内停留时间大幅度增加达1~2min,使调质效果得到了改善,调质后淀粉的糊化度可达25%左右,可添加多种液体,基本符合耐水要求较高的水产饲料使用。
  2.5 水平双筒差动调质工艺和设备
  调质器为双筒差动调质器,小筒桨叶转速高于大筒桨叶转速1~2倍,为200~300r/min左右,其桨叶全部反向推进,将物料推向进口,筒体直径为420~480mm。大筒桨叶转速为100r/min左右,桨叶进口处有3~4组将物料推向出口方向,中部桨叶与轴平行,仅起翻动作用,无推进功能,出口处桨叶有2~3组将物料推向进口方向,但桨叶推向方向根据物料性质可进行调整,物料推进主要由进口桨叶推进力大于出口桨叶来决定,同时调整桨叶的角度来调整推进速度即物料调质时间。大筒体直径为520~560mm。大、小桨叶在直径方向相交,相交量近小桨叶叶片的长度,桨叶端部和桨叶杆部形状大小相同。所以,该机型调质时间可达一般为2~3min,最长达20min,调质效果较好,调质后淀粉糊化度一般30%,最高的糊化度可达40%~50%以上,而且可添加多种液体,双筒差动调质工艺和设备能适应各种水产饲料的调质之用,但造价较高,该调质开始主要用于膨化的调质,现已开始用于制粒的调质。
  2.6 高速调质,低速保温均质上下双筒调质器
  在2003~2004年与水平双筒差动调质器结构相似的上下双筒调质器已问世,其性能的原理来看高速调质与保温均质分开,功能分工明确,为此,调质效果将优于水平双筒差动调质器。
  上筒是高速调质,由于调质效果一定程度上取决于调质过程中传热和传质的速度,传热和传质的速度而决定于蒸汽和粉状颗粒物料内部与界面层的温度梯度、速度梯度、湿度梯度、物料性质(密度、颗粒大小、含水量)等因素。而高速调质,就增加了粉状物料和蒸汽、粉状物料表面与物料内部的温度梯度、速度梯度、湿度梯度,从而就提高调质效果。其直径在400~480mm,转速在450~500r/min。
  下筒是保温均质,由于要达到调质要求,须要有一定的时间,才能使物料调质更均匀,确保了调质性能的优良。所以,上下高速调质,均质保温的双筒调质器的调质效果必将优于水平双筒差动调质器。其直径在500~560mm转速在50~100r/min。该调质器液体添加量可达10%以上。
  2.7 釜式调质工艺和设备
  釜式调质种类较多,其中较好的釜式调质是物料调质时间达20min左右,可添加多种液体,液体添加量可达10%~25%,可调节釜式罐层数来满足不同产量的要求。该调质器的排料由行星螺旋输送机即清仓螺旋输送机,釜式调质器直径1 600~2 700mm。
  2.8 高压调质工艺和设备
  上面所说的调质器都为常压下作业,达到同样效果,相对于高压调质时间较长,特别是难以调质的颗粒物料,宜用高压调质。调质温度可达100℃以上,调质时间可较长,但调质器是受压容器,其压力为20~80kpa,该调质器使蒸汽中的水和热更容易进入物料内部,而且调质效果较为均匀。以前高压调质特别适用于大颗粒的原料调质处理,如压片原料的调质处理。今后如将高压调质器用于粉状饲料的调质处理,能使调质效果优于常压调质。

  3 影响调质器调质效果的主要因素
  调质是制粒或膨化不可缺少的工序,没有良好的调质系统,就没有优良制粒或膨化效果,而影响调质器调质效果的因素较多,主要取决于以下3种因素。
  3.1 物料性能
  3.1.1 物料性质
  由于饲料的组分种类很多,其物料性质不相同,影响调质效果亦不同。根据其主体的组分,物料性质分为蛋白型、淀粉型、纤维型、脂肪型、热敏型等,在调质时作业参数应各不相同。
  3.1.1.1 蛋白型饲料 蛋白质具有亲水性,调质时水分不宜增加过多,否则易堵塞压膜孔,为此,采用过热蒸汽为好,因为蛋白型饲料调质是热量比增湿更重要。
  3.1.1.2 淀粉型饲料 淀粉需要高温、高湿的调质条件,所以,采用低压过热蒸汽或在混合机内加一些水分为宜。
  3.1.1.3 纤维型饲料 纤维持水性和粘结性差,为此水分不宜过高,一般13%~14%,料温控制在55~60℃左右。如果料温过高,压制的颗粒易产生裂缝,采用较低的过热蒸汽或在混合机内加少量水分,以降低压制时的料温。
  3.1.1.4 脂肪型饲料 脂肪型饲料水分不宜过高,为此,采用较高的过热蒸汽有利于脂肪型制粒。
  3.1.1.5 热敏型饲料 热敏型饲料力求调质温度低,料温控制在60℃以下,水分不宜高,所以,可采用较低的过热蒸汽或在混合机内加少量水分,来降低料温是有效的。
  3.1.2 物料的颗粒大小和均匀程度
  由于饲料的组分种类很多,而相同类型粉状物料的颗粒大小和均匀程度相差亦大,这对调质器操作带来一定的难度并提出了较高的要求。因为调质要求使每个颗粒的中心都软化,如小颗粒调质已达到要求时,则大颗粒调质尚未达到要求。如颗粒粒径相差越大,调质效果就差距越大。国外最新研究结论:提出了“粉状颗粒粒径对调质效果的影响”,力求物料颗粒粒径尽量接近,便于取得均匀的调质效果。为此,对于大型饲料厂对调质要求高的品种,颗粒可先进行分级,再进行调质的工艺,来取得最佳调质效果,同时还能节约能耗。
  3.1.3 物料的水分
  水分是影响调质效果的重要因素,在调质温度,调质时间相同情况下,物料的水分含量高,其调质效果优于水分低的物料。由于微生物对湿热的抗性较差,在蒸汽的作用下微生物能在周围介质中吸取高温的水分,因而,对微生物细胞蛋白质的凝固有促进作用,加速微生物死亡(湿热物料微生物死亡时间为较低水分物料的1/3)。所以,在物料的水分含量高的条件下沙门氏菌等霉菌及致病菌和植物血球凝结素、蛋白酶抑制剂有害因子破坏和灭活度高,同时淀粉糊化度亦高。
  3.2 调质器性能
  3.2.1 调质器结构和工艺参数
  3.2.1.1 调质器结构 ①调质器是单层调质器,还是三层调质器;调质器是长型(3~4m)、还是短型(2m以下)调质器;是双筒调质器,还是单筒调质器;是等直径调质器,还是差动调质器;是大直径调质器,还是较小直径调质器;是常压调质器,还是高压调质器,其不同的结构对调质效果有较大的影响。如:对调质时间、调质液体组分的添加量、调质的熟度都不尽相同。所以,对于耐水性要求高的虾饲料,对于液体组分的添加量比例较高,宜用调质时间长、调质转速高的调质器,如差动筒调质器。耐水性要求不太高的鱼饲料用三层调质器、双筒调质器、差动调质器均可以,只要调节调质器桨叶的角度来控制调质时间,就可以满足调质要求,但要比较投资的经济性。一般禽畜饲料采用单筒大直径调质器、双筒调质器都能达到使用要求。差动筒调质器、三层调质器、长型调质器、高转速调质器、双筒调质器具有良好的调质性能,其中差动调质器和双筒调质器调质均匀性最佳,因差动调质器解决或改善了纵向调质均匀问题。其它调质器一定程度有纵向调质不均匀问题依然存在。②桨叶结构不同调质性能仍然有不同,早期调质器的桨叶名副其实是桨叶,而且逐步从较大面积的桨叶转化为小面积的桨叶,近期调质器的桨叶已成方形杆状(桨叶数量亦是影响调质效果重要因素,目前变化不大)。调质效果很大程度决定物料的翻动性能。桨叶大,面积就大,对物料输送有利,但相对静止的物料就多,翻动性能相对就差。所以,调质效果亦就差。为此,调质器的桨叶逐步发展成有一定面积的方形杆状,桨叶数量增多,减弱了物料输送能力,延长调质时间,有良好的翻动性能,从而,提高了调质效果。
  3.2.1.2 调质器转速 相同直径的调质器转速对调质效果影响较大,转速高,使调质物料翻动性能加强,亦使蒸汽在物料表面的速度梯度加大,从而加速了调质速度和效果。同时,桨叶转速高,打击力大,加速了水分向物料内部扩散。所以,高转速的调质器具有较好的调质效果,液体组分的添加比例可达10%后,仍然有较好的调质效果。
  3.2.1.3 调质时间 任何热量传递,质量(水分)传递都需要时间,才能获得最好的调质。而且,不同成品物料粉碎的粒度不同,熟化程度要求不同,调质器的结构不同,则调质时间要求亦应有所不同。一般禽畜饲料调质的时间为30s左右,鱼虾饲料的调质时间达2~20min。总之,调质时间对调质质量影响甚大。可通过调节调质器打板的角度、改变调质器长度和增设保温均质系统增加调质时间,使物料得到较好的调质效果。目前在制粒机上增设保温均质器,就可不同程度改善调质效果。
  3.3 调质蒸汽质量
  由于不同质量的蒸气,其温度及含水率不同, 过热蒸汽质量好,温度高及含水率低,而制粒调质和膨化调质对物料温度和物料含水率都有不同的要求,制粒工艺一般要求入制粒室的料温在75~85℃,物料含水量在17%~18%,制粒后的料温80~85℃。膨化工艺一般要求入膨化腔的料温在95℃以上,物料含水量在28%~30%为宜,膨化腔内的料温达130~140℃以上。由于蒸汽调质后物料难以达到28%~30%的水分,所以,膨化工艺必要时在混合机或调质器内加入水,才能使物料的水分达到28%~30%的要求。在调质器内加水,因水对物料作用时间短,形成物理化学结合水达不到25%的要求,很大一部分是机械结合水(游离水,自由水)。对制粒而言,如要增湿时,在混合机内加水比调质器内加水好,使物料增加的水易成物理化学结合水。而一般制粒和膨化宜在调质器内加水,因水易从颗粒中蒸发,稳定性较差,颗粒在冷却或干燥过程中易失去。外加的水对热敏型物料十分有益。总之,调质是制粒、膨化的重要的环节,由于物料组分不同,饲料的成品不同,调质器不同,调质的各种参数亦应有所不同。
  4 调质器的发展动向
  由于调质器转子转速高的调质速度及调质时添加液体的数量均比转子转速低的要好,所以目前调质器的发展动向是向高速、强力调质器方向发展。调质后有良好的保温均质时间,使调质效果和水平得到一个较大的提高。
  随着高速、强力调质器的应用,饲料消化吸收率的提高,饲料的配方亦应有所调整,在能达到最佳养殖效果和最大经济的效益。否则,将可能会浪费原料或产生一些不良反应如脂肪肝等。

中国畜牧人网站微信公众号

评分

参与人数 1论坛币 +1 收起 理由
superfisherliu + 1

查看全部评分

版权声明:本文内容来源互联网,仅供畜牧人网友学习,文章及图片版权归原作者所有,如果有侵犯到您的权利,请及时联系我们删除(010-82893169-805)。
发表于 2009-5-24 23:54:53 | 显示全部楼层
楼主转了一大堆的资料回来,那你知不知道怎样测定调质时间?
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

发布主题 快速回复 返回列表 联系我们

关于社区|广告合作|联系我们|帮助中心|小黑屋|手机版| 京公网安备 11010802025824号

北京宏牧伟业网络科技有限公司 版权所有(京ICP备11016518号-1

Powered by Discuz! X3.5  © 2001-2021 Comsenz Inc. GMT+8, 2024-11-17 00:37, 技术支持:温州诸葛云网络科技有限公司