|
2017. J. Anim. Sci. 95(9): 3984-3995
13kg和50kg猪对日粮脂肪消化能、代谢能和净能含量的影响
T. A. Kellner and J. F. Patience
本研究的目的在于通过多种手段检测日粮脂肪的能量含量,并通过这些数据建立化学分析值和能量之间的回归方程。试验选用120头PIC去势公猪(品种为Genetiporc 6.0 × Genetiporc F25),单栏饲喂56天。这些去势公猪(初始重9.9±0.6kg)随机分为15个日粮处理。所有试验日粮由95%玉米豆粕型基础日粮和5%玉米淀粉或其他14种油脂组成。14种油脂提供的不饱和脂肪酸:饱和脂肪酸比例范围很大,样品具有代表性,其中包括动植物混合油、菜籽油、精炼动物油A、精炼动物油B、椰子油、玉米油A、玉米油B、鱼油、亚麻油、棕榈油、禽脂、大豆油A、大豆油B、牛油。试验第0-10天和第46-56天期间限制饲喂,前7天为适应期,后3天(第7-10天,体重为13kg;第53-56天,体重50kg)为粪便收集期。体重为13kg时,所有14种油脂的消化能、代谢能、净能平均为8.42、8.26、7.27Mcal/kg。50kg体重时,所有14种油脂的消化能、代谢能、净能平均为8.45、8.28、7.29 Mcal/kg。13kg体重时,DE(Mcal/kg)= 9.363 + [0.097 × (游离脂肪酸, %)] − [0.016 ×n-6:n-3脂肪酸比例] − [1.240 × (花生酸, %)] − [5.054 × (不溶性杂质, %)] + [0.014 ×(棕榈酸, %)] (P = 0.008, R2 = 0.82)。50kg体重时,DE (Mcal/kg) = 8.357 + [0.189 × 不饱和脂肪酸:饱和脂肪酸比例] − [0.195 × (游离脂肪酸, %)] − [6.768 ×(二十二碳酸, %)] + [0.024 × (多不饱和脂肪酸, %)] (P =0.002, R2 = 0.81)。总之,日粮脂肪的化学组成是引起日粮脂肪能值差异的主要原因。
The digestible energy, metabolizable energy, and net energy content of dietary fat sources in thirteen- and fifty-kilogram pigs
T. A. Kellner and J. F. Patience
The objective was to determine the energy concentration of a diverse array of dietary fat sources and, from these data, develop regression equations that explain differences based on chemical composition. A total of 120 Genetiporc 6.0 × Genetiporc F25 (PIC, Inc., Hendersonville, TN) individually housed barrows were studied for 56 d. These barrows (initial BW of 9.9 ± 0.6 kg) were randomly allotted to 1 of 15 dietary treatments. Each experimental diet included 95% of a corn–soybean meal basal diet plus 5% either corn starch or 1 of 14 dietary fat sources. The 14 dietary fat sources (animal–vegetable blend, canola oil, choice white grease source A, choice white grease source B, coconut oil, corn oil source A, corn oil source B, fish oil, flaxseed oil, palm oil, poultry fat, soybean oil source A, soybean oil source B, and tallow) were selected to provide a diverse and robust range of unsaturated fatty acid:SFA ratios (U:S). Pigs were limit-fed experimental diets from d 0 to 10 and from d 46 to 56, providing a 7-d adaption for fecal collection on d 7 to 10 (13 kg BW) and d 53 to 56 (50 kg BW). At 13 kg BW, the average energy content of the 14 sources was 8.42 Mcal DE/kg, 8.26 Mcal ME/kg, and 7.27 Mcal NE/kg. At 50 kg BW, the average energy content was 8.45 Mcal DE/kg, 8.28 Mcal ME/kg, and 7.29 Mcal NE/kg. At 13 kg BW, the variation of dietary fat DE content was explained by DE (Mcal/kg) = 9.363 + [0.097 × (FFA,%)] − [0.016 × omega-6:omega-3 fatty acids ratio] − [1.240 × (arachidic acid, %)] − [5.054 × (insoluble impurities, %)] + [0.014 × (palmitic acid, %)] (P =0.008, R2 = 0.82). At 50 kg BW, the variation of dietary fat DE content was explained by DE (Mcal/kg) = 8.357 + [0.189 × U:S] − [0.195 × (FFA, %)] − [6.768× (behenic acid, %)] + [0.024 × (PUFA, %)] (P = 0.002, R2 = 0.81). In summary,the chemical composition of dietary fat explained a large degree of the variation observed in the energy content of dietary fat sources at both 13 and 50 kg BW.
翻译:朱滔 转自: 猪营养国际论坛CSIS
|
版权声明:本文内容来源互联网,仅供畜牧人网友学习,文章及图片版权归原作者所有,如果有侵犯到您的权利,请及时联系我们删除(010-82893169-805)。
|