本帖最后由 叶知秋 于 2009-7-26 14:20 编辑
热应激条件下肉鸭的营养
万建美 四川农业大学动物营养研究所
摘要:
在我国的大多数地区,家禽生产的最大限制因素是气候条件。高温,特别是伴有高湿的情况下,将对家禽造成应激,最终导致生产成绩降低。我国是肉鸭生产大国,约占世界鸭肉总产量的67%。而肉鸭的养殖地区大多为夏季高温、或高温高湿地区,由于采用现代化的饲养管理模式,使得传统的水禽降温方式已经不再经济适用。虽然在家禽饲养舍施的防暑降温方面已经有了很大的改善,但是在炎热气候下合理的营养供给仍然显得十分重要。本文主要介绍热应激条件下肉鸭的生理状况及如何通过营养调控降低热应激。
关键词:肉鸭;热应激;能量;蛋白;营养需要
1. 前言
由于鸭喙的特点,饲喂颗粒饲粮可以有效的防止肉鸭对饲料的浪费。与粉料相比,颗粒饲料可节省约10%的饲料,同时饲料转化率提高10%(Chen和Huang,1993;Leeson和Summers, 1997)。建议肉鸭颗粒料的直径在0-3周龄时为0.15 cm(Hu,2001)。而在育肥期颗粒饲粮的直径和长度分别为0.3 cm和1 cm。此外,肉鸭是对黄曲霉毒素最为敏感的家养动物之一,因此监测并减少饲料中黄曲霉毒素的含量在气候炎热的地区非常重要,特别是在夏季时更应注意。
肉鸭的品种主要有骡鸭、北京鸭和美洲家鸭。骡鸭是台湾鸭肉消费的主要来源,约占鸭肉消费量的80%。因此,台湾对骡鸭的营养需要研究相对最为透彻。由于骡鸭在3至10周之间的饲料效率变化很大,为了节省饲养成本,建议将育肥期分为3-7周和7-10周两个阶段(Lin等,2004,2005)。无论是0-3周龄,还是3-7周龄的骡鸭,当饲粮代谢能水平在2600-3050 kcal/kg之间变化时,骡鸭都能通过调节采食量而达到最佳的增重。所以,饲粮能量水平的设定主要取决于市场原料的价格。Shen(1988,2001)报道,饲粮能量每增加150 kcal/kg,饲料效率就提高4-6%,然而体脂沉积量也随着饲粮代谢能水平的提高而增加。0-3周龄和3-10周龄的建议的粗蛋白水平分别为18.7%和15.4%。当使用玉米豆粕型饲粮时,就特别注意赖氨酸、蛋氨酸及色氨酸的需要量,因为这三种氨基酸在该类型的饲粮中较缺乏。此外还应特别注意烟酸是否缺乏。骡鸭的营养需要具体见附表1 。
尽管北京鸭主要生产于亚洲国家,但是热带和亚热带地区对北京鸭营养需要的研究并不多。与骡鸭及美洲家鸭相比,北京鸭胴体可沉积较高比例的脂肪,因而其营养需要也不同于前两种类型的肉鸭。NRC(1994)给出了北京鸭的营养需要量。
而美洲家鸭的营养需要则主要是由法国完成的。美洲家鸭的一个重要特点是公鸭和母鸭体重相差很大。这种现在在4-5周龄时开始显现(Scott和Dean, 1991)。因此在制定美洲家鸭的营养需要时,公母鸭间体重的差异必需予以考虑。在实际生产中,公鸭和母鸭因其营养需要的不同,通常在7周龄后就被分开饲养(Leclercq等,1987)。美洲家鸭及其与普通鸭的杂交品种对炎热环境的适应能力比北京鸭强(Chen和Huang,1993),即使在完全没有戏水和游泳的禽舍内养殖也能生长良好。Chen和Huang(1993)等建议,在炎热条件下饲粮的代谢能水平不要超过3000 kcal/kg。0-3周龄和3-7周龄的ME/CP分别为158和187。7周龄以后,公鸭和母鸭的ME/CP分别为214和230。饲粮代谢能和粗蛋白水平不平衡可导致美洲家鸭翅膀侧滑。美洲家鸭的营养需要具体见附表2 。
在热应激时,肉鸭的生理反应和生产性能都会发生很大的变化。舍饲条件下,北京鸭的最适温度范围是10-15℃(Hagen and Heath, 1976)。当温度超过25℃时,则会出现喘息(Bouverot et al.,1974)。Surendranathan等(1971)的研究表明,当昼夜温度在24.3-37.2℃之间变化时,蛋鸭直肠温度在白天升高,但通过在水池中戏水1 h后,直肠温度由42.1℃降低至40.9℃。热应激条件下,北京鸭的肾上腺增大(Hester et al.,1981)。当环境温度由18.3℃增加至29℃时,肉鸭的体增生降低30%(Bouverot et al., 1974)。
由于在通常的养殖模式下,肉鸭有较多戏水的机会,因而可以减少热应激的不良影响。但是,Lee等(1991)研究发现,在笼养条件下蛋鸭的产蛋性能和饲料转化率要优于地面放养可戏水的蛋鸭。这可能是笼养条件下能量损耗较低的结果。在现代养殖的条件下,高密度集约化养殖使得肉鸭的热应激成为不容忽视的问题。
2. 降低热应激的营养措施
有关降低肉鸭热应激的文章很少。主要的原因肉鸭的生产国主要在亚洲,而这一地区的水源较为丰富。在水中,鸭可以通过脚和喙散失大量的热量(Hagen和Heath,1980;Scott和Dean,1991)。
2.1. 代谢能和粗蛋白
炎热气候可使肉鸭的采食量降低,从而降低生长性能。Bird(1985)报道,饲养于英国的种鸭的采食量为230 g/天/只,而饲养于热带地区的种鸭采食量仅为170 g/天/只。在10个月的时间里,其产蛋量和蛋重分别由210枚和87 g以上降低到不足160枚和78 g。当把饲粮代谢能水平由2900 kcal/kg降低至2700 kcal/kg,粗蛋白水平由18%提高到21%,同时将微量养分的用量增加50%,使产蛋量和蛋重分别提高到190枚和84 g。在台湾,养殖者在夏季倾向于在饲粮中加入鱼粉或/和全脂大豆以改善产蛋鸭的生产性能。炎热气候下给北京鸭饲喂高营养浓度的饲粮(0-6周龄:ME3850kcal/kg, CP 24%;7-10周龄:ME3850kcal/kg, CP 22%)可以获得很好的生长性能(Chin和Hutagalung,1984)。这可能是因为饲喂高脂肪的饲粮时的热增耗较低,因而可以降低动物的热应激。
2.2. 酸碱平衡
Huang等(2002)研究了饲粮电解质平衡(DEB)对产蛋鸭的影响。在炎热气候时,采食电解质平衡值为228 meq/kg的饲粮时,产蛋率和采食量最高,蛋壳质量也最好。而采食电解质平衡值为15和498 meq/kg的饲粮时,生产性能最差。血液pH、HCO3-及碱量与饲粮DEB值间有正相关关系。在寒冷气候时,采食电解质平衡值为324和403 meq/kg的饲粮时的生产性能最佳。而肉鸭饲粮最佳电解质平衡值在200 meq/kg左右(Chen和Huang,1993)。
2.3. 维生素C
维生素C可以提高火热气候下家禽的生产性能。Lai等(2003)分别在六月和八月向骡鸭饲粮中添加不同浓度的维生素C(50-300 ppm之间)。体增重随着维生素C添加效应的变化在公鸭和母鸭之间表现出了很大的差异。添加维生素C并没有显著改变母鸭11周龄的体增重。然而,当维生素C的添加水平为300 ppm时,公鸭的体增重却显著低于对照组。而添加维生素C后,肉鸭的采食量和饲料转化效率并不改变(Lai等,2003)。
附表 1 Recommended nutrient requirement for mule ducks as percentage or
unit per kg of diet (88% dry matter)
Nutrient
| 0–3 weeks
| 3-10 weeks
| ME, kcal/kg
| 2890
| 2890
| Crude protein, %
| 18.7
| 15.4
| Amino acids
|
|
| Arginine, %
| 1.12
| 0.92
| Histidine, %
| 0.27
| 0.22
| Isoleucine, %
| 0.66
| 0.54
| Leucine, %
| 1.31
| 1.08
| Lysine, %
| 1.10
| 0.90
| Methionine + Cystine, %
| 0.69
| 0.57
| Phenylalanine + Tyrosine, %
| 1.11
| 0.92
| Glycine + Serine, %
| 1.22
| 0.71
| Threonine, %
| 0.68
| 0.56
| Tryptophan, %
| 0.24
| 0.20
| Valine, %
| 0.80
| 0.68
| Minerals
|
|
| Calcium, %
| 0.72
| 0.72
| Nonphytate phosphorus, %
| 0.42
| 0.36
| Sodium, %
| 0.21
| 0.21
| Chloride, %
| 0.13
| 0.13
| Potassium, %
| 0.49
| 0.49
| Magnesium, mg
| 500
| 500
| Manganese, mg
| 72
| 60
| Zinc, mg
| 82
| 82
| Iron, mg
| 96
| 96
| Copper, mg
| 12
| 12
| Iodine, mg
| 0.28
| 0.28
| Selenium, mg
| 0.15
| 0.15
| Vitamins
|
|
| Vitamin A, IU
| 8250
| 8250
| D, ICU
| 600
| 600
| E, IU
| 15
| 15
| K, mg
| 3
| 3
| Thiamin, mg
| 3.9
| 3.9
| Riboflavin, mg
| 6
| 6
| Pantothenic acid, mg
| 9.6
| 9.6
| Niacin, mg
| 60
| 60
| Pyridoxine, mg
| 2.9
| 2.9
| Vitamin B12, mg
| 0.02
| 0.02
| Choline, mg
| 1690
| 1690
| Biotin, mg
| 0.1
| 0.1
| Folic acid, mg
| 1.3
| 1.3
| (Shen, 2002)
附表2.
Nutrient requirements for Muscovy ducks.
| 0-3 weeks
|
| 3-7 weeks
|
| 7 weeks-marketing
| Nutrient
| Mixed
|
| Mixed
|
| Male
|
| Female
| ME, kcal/kg
| 2800
|
| 3000
|
| 2600
|
| 2800
|
| 2800
|
| 3000
|
| 2800
|
| 3000
| Crude protein, %
| 17.7
|
| 19.0
|
| 13.9
|
| 14.9
|
| 13.0
|
| 14.0
|
| 12.2
|
| 13.0
| Amino acids, %
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Arginine
| 1.03
|
| 1.10
|
| 0.80
|
| 0.86
|
| 0.78
|
| 0.84
|
| 0.65
|
| 0.70
| Isoleucine
| 0.80
|
| 0.85
|
| 0.58
|
| 0.62
|
| 0.57
|
| 0.61
|
| 0.47
|
| 0.51
| Leucine
| 1.69
|
| 1.80
|
| 1.24
|
| 1.34
|
| 1.26
|
| 1.36
|
| 1.05
|
| 1.13
| Lysine
| 0.90
|
| 0.96
|
| 0.66
|
| 0.71
|
| 0.65
|
| 0.70
|
| 0.54
|
| 0.58
| Methionine
| 0.38
|
| 0.41
|
| 0.29
|
| 0.31
|
| 0.24
|
| 0.26
|
| 0.23
|
| 0.24
| Methionine+cystine
| 0.75
|
| 0.80
|
| 0.57
|
| 0.61
|
| 0.50
|
| 0.54
|
| 0.46
|
| 0.50
| Phenylalanine+tyrosine
| 1.57
|
| 1.67
|
| 1.15
|
| 1.23
|
| 1.15
|
| 1.24
|
| 0.96
|
| 1.03
| Threonine
| 0.65
|
| 0.69
|
| 0.48
|
| 0.51
|
| 0.24
|
| 0.26
|
| 0.38
|
| 0.41
| Tryptophan
| 0.19
|
| 0.20
|
| 0.14
|
| 0.15
|
| 0.13
|
| 0.14
|
| 0.11
|
| 0.12
| Valine
| 0.87
|
| 0.93
|
| 0.64
|
| 0.69
|
| 0.64
|
| 0.69
|
| 0.53
|
| 0.57
| Minerals:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Calcium, %
| 0.85
|
| 0.90
|
| 0.70
|
| 0.75
|
| 0.65
|
| 0.70
|
| 0.65
|
| 0.70
| Total phosphorus, %
| 0.63
|
| 0.65
|
| 0.55
|
| 0.58
|
| 0.49
|
| 0.51
|
| 0.49
|
| 0.51
| Sodium, %
| 0.15
|
| 0.16
|
| 0.14
|
| 0.15
|
| 0.15
|
| 0.16
|
| 0.15
|
| 0.16
| Chloride, %
| 0.13
|
| 0.14
|
| 0.12
|
| 0.13
|
| 0.13
|
| 0.14
|
| 0.13
|
| 0.14
| Manganese, mg
|
| 70
|
|
|
| 60
|
|
|
|
|
| 60
|
|
|
| Zinc, mg
|
| 40
|
|
|
| 30
|
|
|
|
|
| 20
|
|
|
| Iron, mg
|
| 40
|
|
|
| 30
|
|
|
|
|
| 20
|
|
|
| Vitamins:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Vitamin A, IU
|
| 8000
|
|
|
| 8000
|
|
|
|
|
| 4000
|
|
|
| D, IU
|
| 1000
|
|
|
| 1000
|
|
|
|
|
| 500
|
|
|
| E, mg
|
| 20
|
|
|
| 15
|
|
|
|
|
| –
|
|
|
| K, mg
|
| 4
|
|
|
| 4
|
|
|
|
|
| –
|
|
|
| Thiamin, mg
|
| 1
|
|
|
| –
|
|
|
|
|
| –
|
|
|
| Riboflavin, mg
|
| 4
|
|
|
| 4
|
|
|
|
|
| 2
|
|
|
| Pantothenic acid, mg
|
| 5
|
|
|
| 5
|
|
|
|
|
| –
|
|
|
| Niacin, mg
|
| 25
|
|
|
| 25
|
|
|
|
|
| –
|
|
|
| Pyridoxine, mg
|
| 2
|
|
|
| –
|
|
|
|
|
| –
|
|
|
| Vitamin B12, mg
|
| 0.03
|
|
|
| 0.01
|
|
|
|
|
| –
|
|
|
| Choline, mg
|
| 300
|
|
|
| 300
|
|
|
|
|
| –
|
|
|
| Biotin, mg
|
| 0.1
|
|
|
| –
|
|
|
|
|
| –
|
|
|
| (Leclercq 等,1987)
参考文献:
Bird, R.S. (1985) The future of modern duck production, breeds, and husbandry in south-east Asia. In: Farrell, D.J. and Stapleton, P. (eds) Duck Production and World Practice. University of New England, Amidale, Australia, pp. 229–237.
Bouverot, P., Hildwein, B. and LeGoff, D. (1974) Evaporative water loss, respiratory pattern, gas exchange and acid-base balance during thermal panting in Pekin ducks exposed to moderate heat. Respiration Physiology 21, 255–269.
Chen, D.T., Lee, S.R., Hu, Y.H., Huang, C.C., Cheng, Y.S., Tai, C., Poivey, J.P. and Rouvier, R. (2003) Genetic trends for laying traits in the Brown Tsaiya (Anas platyrhynchos) selected with restricted genetic selection index. Asian-Australasian Journal of Animal Sciences 16(12), 1705–1710.
Chin, D.T.F. and Hutagalung, R.I. (1984) Energy and protein requirements of Pekin broiler ducks in a tropical environment. In: Proceedings of the 8th Annual Conference of Malaysian Society of Animal Production, Malaysia, pp. 60–66.
Hagen, A.A. and Heath, J.E. (1976) Metabolic responses of white Pekin duck to ambient temperature. Poultry Science 55, 1899–1906.
Hagen, A.A. and Heath, J.E. (1980) Regulation of heat loss in the duck by vasomotion in the bill. Journal of Thermal Biology 5, 95–101.
Hester, P.Y., Smith, S.G., Wilson, E.K. and Pierson, F.W. (1981) The effect of prolonged heat stress on adrenal weight, cholesterol and corticosterone in white Pekin ducks. Poultry Science 60, 1583–1586.
Huang, S.C., Shen, T.F. and Chen, B.J. (2002) The effects of dietary electrolyte balance on the blood parameters and laying performance of laying brown Tsaiya ducks. Journal of the Chinese Society of Animal Science 31(3), 189–200.
Lai, M.K., Huang, J.F., Lin, C.Y. and Lin, R.H. (2003) Effects of ascorbic acid supplementation on growth performance and carcass traits of mule ducks in summer season. Journal of Taiwan Livestock Research 36(4), 283–290.
Leclercq, B., Blum, J.C., Sauveur, B. and Stevens, P. (1987) Nutrition of Ducks. In: Feeding of Non-ruminant Livestock, Butterworths, London, pp. 102–109. (Translation of INRA (1984) L’Alimentation des animaux monogastriques by Julian Wiseman.)
Lee, S.R., Pan, S.T., Shyu, S.T. and Chen, B.J. (1991) Study on the cage-feeding system for laying Tsaiya duck (Anas platyrhynchos var. domestica). Journal of Taiwan Livestock Research 24(2), 177–185.
Leeson, S. and Summers, J.D. (1997) Feeding programs for waterfowl. In: Leeson, S. and Summers, J.D. (eds) Commercial Poultry Nutrition, 2nd edn. University Books, Guelph, Ontario, Canada, pp. 324–340.
Lin, Y.H., Huang, A.J.F., Lin, Y.A. and Lin, C.Y. (2004) Determination of crude protein and metabolizable energy requirements in growing mule ducks derived from large Kaiya ducks. Journal of the Chinese Society of Animal Science 33 (suppl.), 237.
Lin, Y.H., Huang, J.F., Lin, C.Y., Hu, Y.H., Lin, Y.A. and Lin, C.Y. (2005) Effects of dietary protein and metabolizable energy levels of growth period on the laying performance of Brown Tsaiya ducks. Journal of the Chinese Society of Animal Science 34 (Suppl.), 255.
Lin, Y.H., Huang, J.F., Lin, C.Y., Lin, Y.A., Hu, Y.H. and Lin, C.Y. (2005) Determination of crude protein and metabolizable energy requirements in finishing mule ducks derived from large Kaiya ducks. Journal of theChinese Society of Animal Science 34 (Suppl.), 254.
NRC (National Research Council) (1994b) Nutrient requirement of ducks. In: Nutrient Requirements of Poultry, 9th edn. National Academy Press, Washington, D.C., pp. 42–43.
Scott, M.L. and Dean, W.F. (1991) Energy, protein, and amino acid requirements of ducks. In: Nutrition and Management of Ducks.M. L. Scott of Ithaca, New York, pp. 55–88.
Shen, T.F. (1988) Manual of Nutrient Requirement of Ducks. Department of Animal Science, National Taiwan University, Taipei, Taiwan.
Shen, T.F. (2001) Nutrient requirements of poultry. In: Animal Husbandry: Poultry, 2nd edn. Chinese Society of Animal Science, Taipei, Taiwan. pp. 165–196.
Shen, T.F. (2002) Review on nutrient requirements of mule and Tsaiya ducks. Scientific Agriculture 50(1, 2), 129–134.
Surendranathan, K.P. and Nair, S.G. (1971) Environmental influences on certain physiological factors in ducks (Anas platyrhynchos domesticus). The Indian Veterinary Journal 48(6), 587–592. |