

玉米 DDGS

的生产工艺与选用标准

禾丰集团/甘在红 邵彩梅

摘 要: 众所周知, DDGS(包含可溶性溶解物在内的干燥酒糟饲料) 已成为饲料生产中重要的蛋白质 饲料原料。现在市场上众多厂家都在生产DDGS,其成分差异较大,这就需要一个评判标准。该文试图通 过对其生产工艺的探讨,以了解 DDGS、DDG(干酒糟固行物)、DDS(可溶性的干酒糟滤液) 的生产过程及 其营养组成和特点,为人们选用DDGS提供标准。

关键词:DDGS;DDG;营养组成

随着人们对DDGS的了解越来越多,饲料企业 越来越重视研究和使用它。DDGS 是玉米深加工生 产酒精(包括食用酒精、工业酒精、燃料乙醇)的 副产物。尤其是近年世界能源的危机,国家大力推 广乙醇汽油,越来越多的地方开始进行燃料乙醇的 工业生产,DDGS的选择范围越来越广,产量越来越 多。DDGS 的生产工艺有 3 种之多,因此,厂家及其 主产品不同、工艺不同,DDGS的营养组成也有差 异。

玉米深加工生产酒精的3种主要工艺方法

1.1 全粒法

即玉米不经处理,直接经除杂、粉碎就投料,我 们称之为全粒法玉米制酒,其副产品为 DDG、DDS、 DDGS

1.2 湿法

玉米先经浸泡,像玉米生产淀粉一样,先破碎

除皮,分离胚芽、蛋白获得粗淀粉浆,再生产酒精, 则可获得玉米油、玉米蛋白粉、玉米纤维蛋白饲料 以及 DDG、DDS、DDGS。

1.3 干法

即玉米预先湿润一下,不用大量温水浸泡,然 后破碎筛分,分去部分玉米皮和玉米胚,获得低脂 肪的玉米淀粉,生产酒精,获得副产品是玉米油、玉 米胚芽饼、纤维饲料以及 DDG、DDS、DDGS。

这3种方法各有利弊,湿法生产综合效益高,但 投资过大,干法生产综合效益不及湿法,但投资相 对不高。全粒法不能将玉米中脂肪、蛋白分离出来, 全部成为酒精废液,如不加利用,将造成污染。所 以如何将这些废液回收,综合利用起来生产最优的 DDGS, 也是弥补全粒法不足的重要措施。

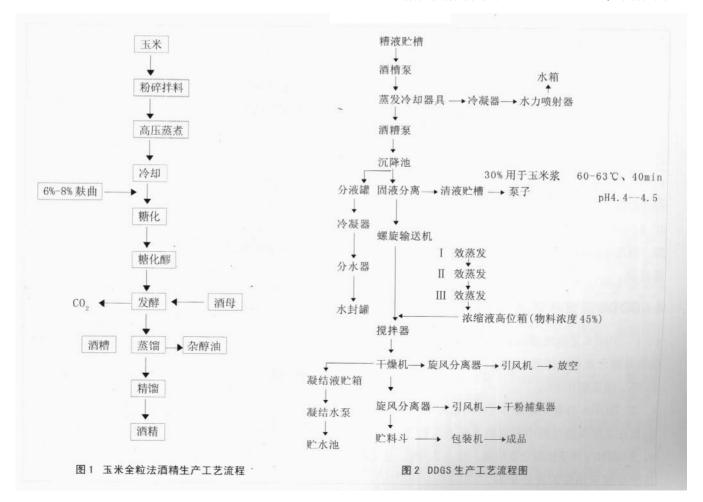
如果仔细分析一下,抛弃其它因素,单考虑获 得最优的 DDGS,就不难发现:用全粒法生产酒精获 得的DDGS 大大优于用湿法和干法生产酒精而获得

的 D D G S 。 因为它除含淀粉、糖外,还含玉米中所有的脂肪(一般为 9%~13%)、蛋白、微量元素等。

2 玉米酒糟液生产 DDGS 的工艺流程

下面简要介绍玉米全粒法生产酒精工艺流程(见图1)与玉米酒槽液生产DDGS工艺流程(见图2)。

从图1 工艺可看出,生产酒精过程中,必然会产生大量的酒糟液。一般情况下,生产1 吨酒精需消耗3.1~3.3t 玉米,同时,也会产生酒糟液(即玉米酒精蒸馏废液)13t~15t,当然随着工艺的改进发酵,成熟胶中酒精浓度的提高,每吨酒精产生的蒸馏废液,还会进一步减少,废液浓度也会提高。


但应知道玉米粉碎后,经加水调浆、蒸煮、液化、糖化、加种母发酵经蒸馏获得酒精后,玉米中只有糖类和淀粉才能转化成酒精。脂肪、蛋白、纤维、矿物质不能转化成酒精而残留在废液中,此外,还有加入的糖化曲、酵母。因此,酒精蒸馏废液中所含营养成分,绝不是3t多玉米制酒精后剩余物的

浓缩,还有发酵过程中产生的未知因子以及糖化曲、酵母成分。

从图 2 工艺可看出,DDGS 的生产工艺有 2 个关键环节,固液分离和高效蒸发浓缩。 过去,对废液的处理只作简单过滤,将滤渣干燥后作饲料,而滤清液被排放了。这种滤渣干燥后称 DDG;将过滤的滤清液再蒸发,浓缩获得的产品称 DDS,DDS全是可溶解的营养物,包含玉米中可溶性营养物质、未知生长因子、糖化曲、酵母等。现在比较定型的是将二者混合干燥,制成 DDGS。

要想达到固液分离很容易,但常用设备过滤效率低、消耗高,一个万吨酒精厂每天排放 450 t 酒精废液。所以,选择高效节能的酒糟固液分离设备是生产DDGS的关键设备之一。一般分离后获得的固体滤饼,其水分为65%~70%,即固形物含量达30%~35%,但随着固液分离设备的不断改进提高,固体滤饼的水分也在不断降低,可达50%左右。

滤清液不溶固形物在0.02%~0.05%,可溶性固

形物在1.5%~2.5%之间,其中总糖0.4%~0.6%。为了能使滤清液进入干燥装置,须预先将滤清液蒸发浓缩到含干物质45%浓度,呈浆状。从2%左右浓缩到45%是一项耗能较高的工程。过去未能实现酒糟干燥,就是因为酒槽太稀,传统的多效蒸发浓缩过程耗能太高,很难实行。现在采用蒸汽机械法再压缩装置,亦称热泵,即将蒸发皿顶部排出的二次蒸汽机械打开,达到升温目的,而且二次蒸汽不再用冷却水冷凝。出口和进口温差不大,热量绝大部分回用,仅仅耗用电能,有明显经济效益。

3 如何选择优质的 DDGS

- 3.1 如果生产厂家采用的是全粒法生产工艺,那么DDGS产品应是最好的。但现在新办的大企业很少用这个工艺,有此工艺的大多为20世纪80~90 年代成立的酒精企业。
- 3.2 即使用全粒法生产工艺,也有部分企业进行了工艺改造,增加了浸油的工艺,使脂肪降低。
- 3.3 采用湿法生产工艺,其综合效益是最好的,但其DDGS不是最好的,脂肪含量偏低。
- 3.4 采用干法生产工艺相对较少, DDGS 的质量应介于上述两者之间。
- 3.5 不管采用何种工艺,如果没有高效蒸发浓缩器 这个工艺设备,就不能将滤清液 D D S 回收,所得到 的产品就是 D D G ,而不是 D D G S。
- 3.5 只有用第一种方法生产的 DDGS,没有浸油过程,脂肪含量高,可达9%~13%。
- 3.6 DDGS 在气味上应该有发酵的谷物味,尝之微酸。颜色由淡褐色直至深褐色,可溶物DDS 越高,颜色越深。

4 DDGS 的营养特点

- 4.1 DDGS 是优质蛋白原料,其氨基酸含量及可消化氨基酸含量都比较高,蛋白在28%左右,赖氨酸1.3%,蛋氨酸0.6%。
- 4.2 DDGS 含有大量水溶性维生素和脂溶性维生素 E 及在发酵蒸馏过程中形成的未知生长因子。
- 4.3 DDGS 中亚油酸含量较高,可达2.3%,是必需防脂肪酸亚油酸的良好来源。

- 4.4 DDGS中脂肪含量较高,可达9%~13%,纤维素含量中等,其适口性和饲喂效果都较好。
- 4.5 DDGS 是反刍动物优质的过瘤胃蛋白,在瘤胃 未降解率达46.5%,而豆粕仅为26.5%。
- 4.6 DDGS 不含有任何抗营因子,保证了它应用领域的广泛。
- 4.7 在发酵过程中,细菌分解了部分纤维素,同时破坏了纤维素和木质素之间的紧密结构,使DDGS的纤维成分利用率得以提高,提高了其生物效价。
- 4.8 DDGS 中含有的糖化酶、酵母以及发酵产物能增强胃肠良性微生物功能,提高畜禽免疫功能。
- 4.9 DDGS 也是生产饲料酵母的优质原料。

5 DDGS 的应用优势

- 5.1 DDGS 对反刍动物来讲,是非常好的过瘤胃蛋白,在瘤胃未降解率能达到 46.5%。发酵中产生的香气能促进牛、羊等反动动物的食欲,有很好的适口性。DDGS 中纤维素虽较高,但在瘤胃中能得到有效分解。其中较高的脂肪和可利用纤维素又有利于维持瘤胃中的生态平衡。
- 5.2 对于水生动物而言,它有很好的适口性,因此会经常出现抢食现象。它的粘结性好,在加工水产饲料中颗粒成型率高。它在水生动物饲粮中用量可达10%~20%左右。
- 5.3 对于家禽来说,它也是第一限制性氨基酸蛋氨酸较好的来源,同时也是家禽必需脂酸的来源。高脂肪的能量对以能为食的家禽来说意义重大。它在家禽饲粮中用量可达5%~15%左右。
- 5.4 对于猪来说,它一般仅适用于中、大猪,不能 当做单一的蛋白质饲料来源,是良好的磷源,它对 猪有很好的适口性。少量的酒精,能增进猪的唾液、 胃液分泌,增强胃肠消化吸收机能。它在育肥猪饲 粮中用量可达5%~10%,母猪、公猪为20%~30%。

6 结语

DDGS 是较好的蛋白质饲料原料,可在各种动物中使用,但须对它的生产工艺和营养组成有所了解,这样才能正确采购,科学使用。