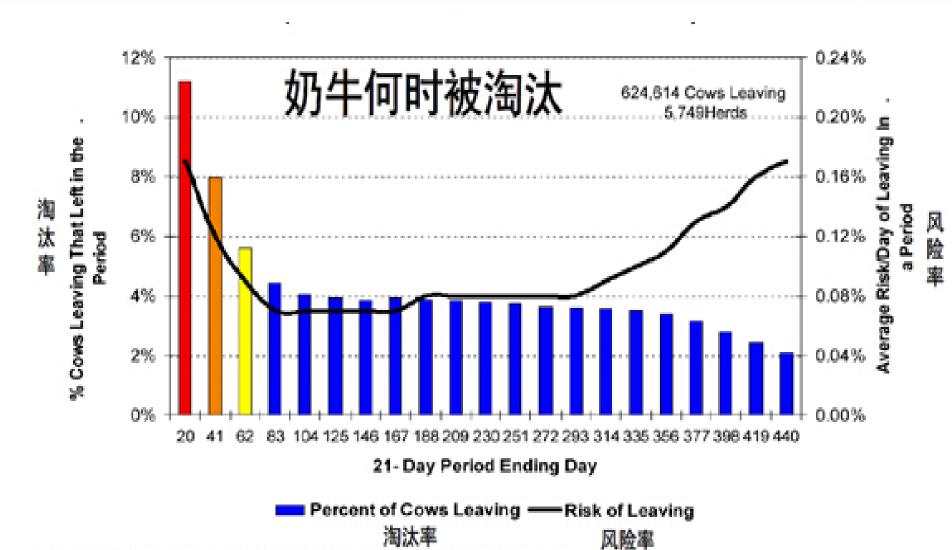


激情迈上创业新征途 共同创造2020新辉煌

奶牛饲养的关键130天

2015年8月6日 呼和浩特 北京大北农集团 董晓玲

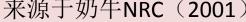

泌乳牛的常见问题

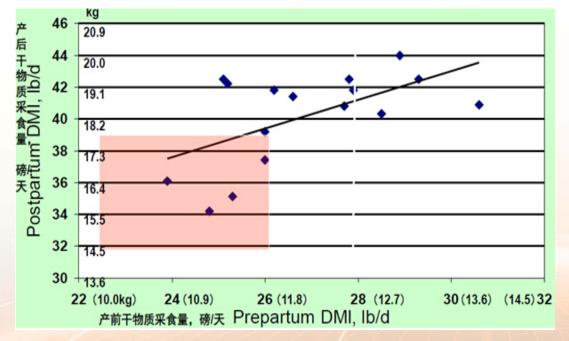
- 疾病问题
- 奶产量提升问题
- 乳成分问题

奶牛淘汰率(产后60天内低于8%)

Source: 2002, Steve Stewart, DVM, Dipl.-ABVP, Univ. of Minnesota, College of Vet. Med.

第一个问题: 泌乳牛的疾病问题


- 常见疾病:脂肪肝、酮病(〈2%)、产乳热(〈3%)、低血钙症(〈30%)、真胃移位(〈5%)、胎衣不下(〈8%)、子宫炎、酸中毒、乳房炎等等
- 发病时间:大多数疾病发生在产前30天---产后30天。


发病原因: DMI的变化

体重680公斤的荷斯坦奶牛产前、产后干物质采食量(DMI)的变化

	妊娠天数			25kg产奶量,3.5%乳脂率	
	240	270	279	产后11天	
DMI (Kg)	14.4	13.7	10.1	13.5	16.1
NEL(Mcal/d)	14	14.4	14.5	27.9	27.9
NEL(Mcal/kg)	0.97	1.05	1.44	2.06	1.73
来源于奶牛NRC(2001)					

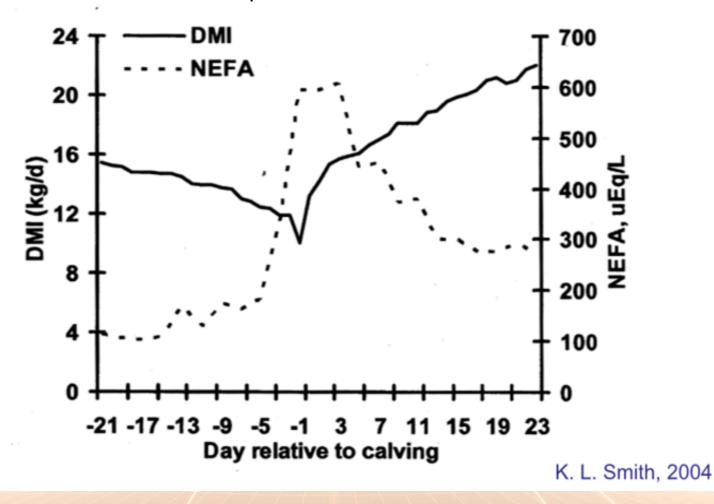
- 干奶后期的DMI比干奶前期 降低了15-30%(干奶前期采 食量是体重的1.8-2.5%)。
- 产后的能量需求为产前能量 需求的一倍。

产后干物质采食量对体况的影响

体重680公	·斤的荷斯坦奶牛	产后的变化
--------	----------	-------

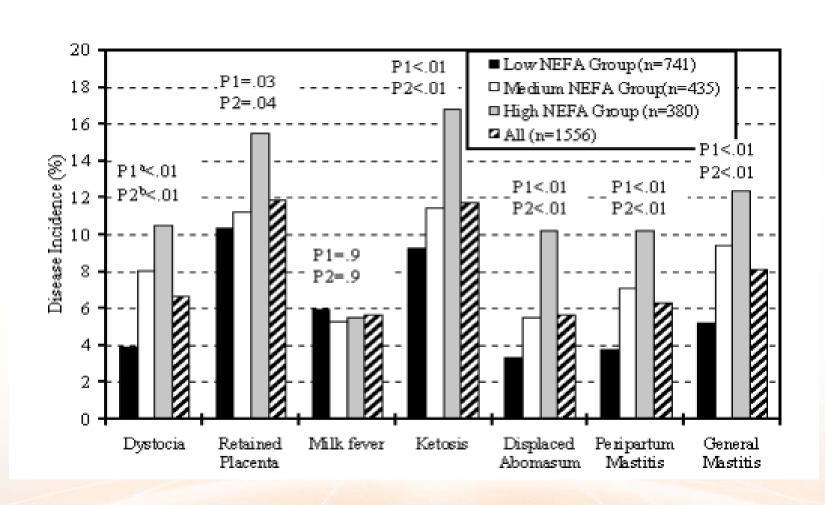
	产后11天,产奶量25kg,到	礼脂率3.5%
DMI (kg)	13.5	16.1
NEL (Mcal/d)	27.9	27.9
NEL(Mcal/kg DM)	2.06	1.73
CP(%)	17.5	16
最低NDF(%)	25-33	25-33
最低ADF(%)	17-21	17-21
最高NFC(%)	36-44	36-44
每减少一个体况评分所需天数	99	4886

所用的典型饲粮营养价值评定


NDF(31.6),粗饲料NDF(%)23.7; ADF(%)21; NFC((%)41.4,饲粮NEL(Mcal/kg DM) 1.75; C P (%DM) 17.4

来源于奶牛NRC(2001)

DMI和血浆NEFA之间的关系



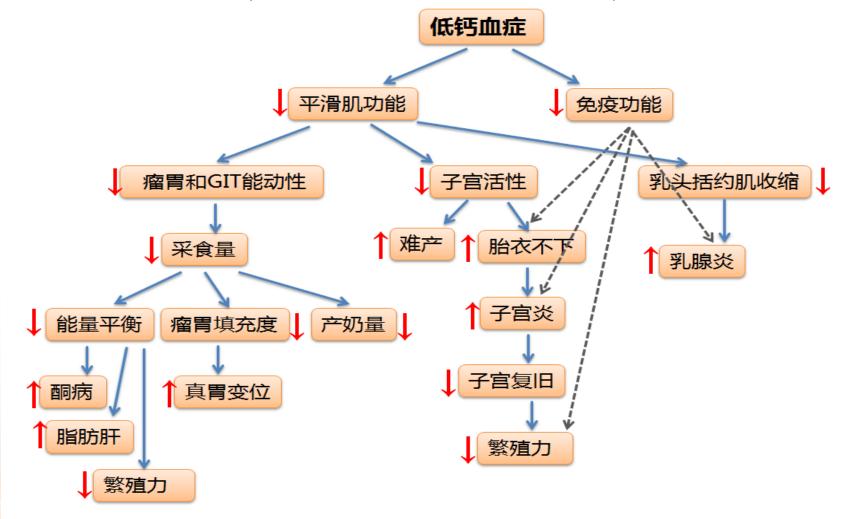
干物质采食量下降和胎儿迅速生长对营养的更多需求,导致过度的营养负平衡,从而发生体脂动员,发生体重下降和增加酮病风险。NEFA几乎完全由体脂动员产生。当NEFA浓度高于正常值(>0.3mEq/L)表明脂肪已经被调动,以应对能量负平衡。

NEFA与疾病之间关系(Dyk, 1995)

胎衣不下和子宫炎

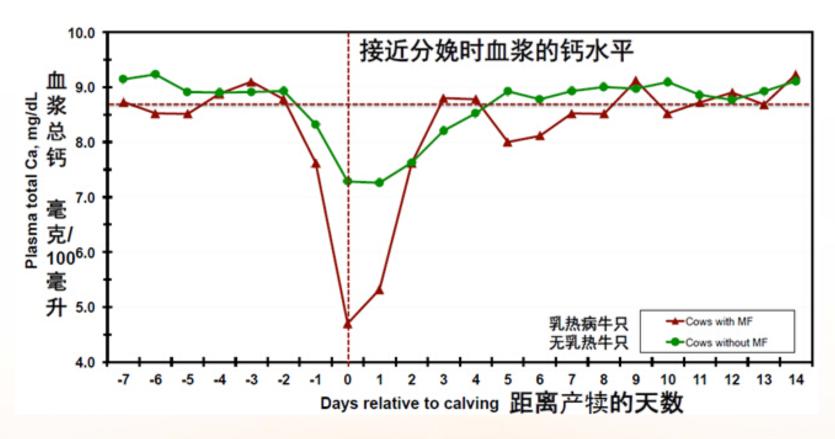
- 营养因素: 能量、蛋白质、钙、维生素、微量元素等。
- 产前过肥的牛(脂肪肝),通常与奶牛胎衣不下和子宫炎 较高的发病率有关(Morrow, 1976)。
- 患产乳热的牛发生胎衣不下的可能性增加了4倍多(Curtis等, 1985)

真胃移位



- 产前3周到产后4周是发生真胃移位的危险期。
- 瘤胃不能占据子宫回缩后所留的空间
- 皱胃弛缓:分娩后奶牛血浆中钙水平下降使皱胃收缩力呈线 性降低,这也许是导致皱胃弛缓和体积拉长的原因。
- 妊娠末期和泌乳早期增加的精料比例会增加皱胃移位的发生率(Coppock等, 1972)。皱胃内VFA已经证明可降低皱胃收缩力(Breukink, 1991)。
- 干奶期体况过肥的牛发生真胃移位的危险性更大,原因是分娩前后胖牛的采食量下降更多(Cameron等, 1998)。

产乳热



决定产乳热的一个重要因素就是奶牛分娩时体液的酸碱平衡状态(Craige, 1947; Ender等, 1971)。代谢性碱中毒会破坏甲状旁腺素的生理活性,以至骨的重吸收过程和1,25-二羟维生素D合成过程受阻,降低了动物的泌乳对钙需要的有效调节能力。所以饲喂高钾、钠的饲粮时,奶牛处于相对 代谢性碱中毒状态,使动物不能有效适应泌乳对钙的需要,并发展为产乳热。

维持血钙水平,避免低血钙症

• 亚临床低血钙症可增加子宫内膜炎风险率(3.2倍),增加产后发烧风险率(2.4倍),增加产后β-羟基丁酸(1.0vs.0.7mmol/L),造成较长空怀期(124 vs.109 天)。另外,还可使免疫力受抑制。

降低疾病发病率的解决办法

- ✓密切关注奶牛的体况变化。
- ✓严格按照日粮饲喂程序进行。
- ✓高产奶牛一定要结合免疫程序。
- ✓ 无论在哪个阶段,保证瘤胃健康是前提。
- ✓ 在保证瘤胃健康的前提下,尽可能提高干物质采食量。

密切关注产后15天

- 这时期关键是监测这些牛(体温、瘤胃蠕动、胎盘气味特征、 食欲、粪便、精神状态),保证在转入高产群时和接受高营养 日粮时是健康的。
- 新产牛的目标是产后三周能量损失巨大,应尽早达到能量正平 衡,即如何快速提高采食量。所以产后3周的饲喂是新产牛的 关键,这会影响到5-7L的奶量。
- 产后15天的饲喂既影响到奶牛的营养代谢病的发生,又关系到奶牛整个泌乳期高峰期的启动,更影响到奶牛的繁殖。
- 这个时期既要提高采食量,提高能量摄入,又要预防酸中毒。

泌乳牛的第二个问题: 奶量提升

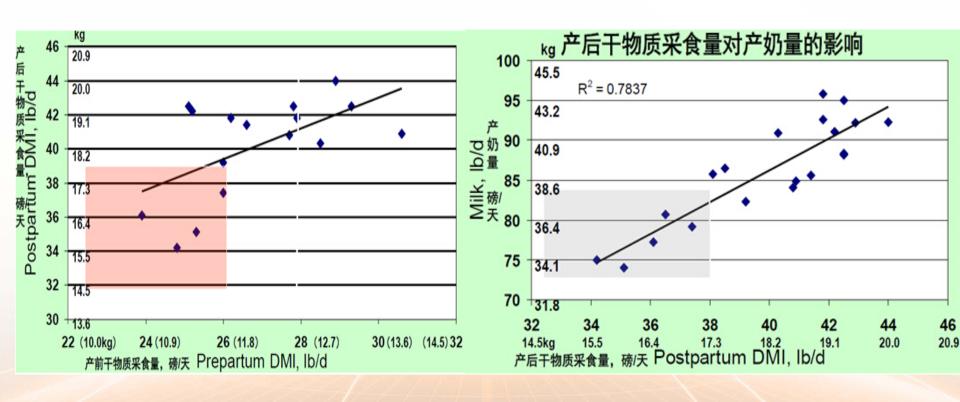
Table 1. Guide to estimate 305-day lactation yield

Month of lactation	Days in milk	First lactation	Second & higher lactation	
1	16	0.348	0.371	
2	46	0.409	0.421	
3	77	0.397	0.400	
4	107	0.381	0.376	
5	138	0.362	0.350	
6	168	0.344	0.326	
7	199	0.323	0.299	
8	299	0.301	0.276	
9	260	0.277	0.249	
10	290	0.249	0.211	

A mature cow that produces 25 kg of milk on day 77 is expected to produce \sim 25/0.4 * 100 = 6250 kg in 305 days.

另一个估算公式: 奶牛的产奶潜力=高峰期产奶量*200

产奶量低的几个原因



- 疾病会影响到奶牛的泌乳量
- 高峰期和泌乳期的持续力将决定奶牛整个泌乳期的产量
- 奶牛的繁殖障碍会影响到奶牛的单产。

奶牛饲养的关键

- 养奶牛就是养瘤胃
- 干物质采食量是奶牛营养中最重要的指标

影响奶牛干物质采食量的因素

- 适口性、提供的饲料是否足够
- 奶牛的体格大小、瘤胃健康程度、泌乳阶段、水质、热应激、动物健康、稳定的日粮供应
- NDF含量: 总日粮的NDF为28-34%时,可以获得最佳采食; 来源于粗饲料的最大NDF=奶牛体重的1%;来源于日粮的最大NDF=奶牛体重的1.2%

使用NDF估测奶牛的潜在干物质采食量

例如: 600 kg 体重的奶牛采食牧草(45% NDF) 和精补料(15% NDF)。

- 来源于粗饲料的最大NDF的采食量 = 体重的1% = 6 kg
- 牧草的最大的DM采食量(45%NDF) = 6 x 100 ÷ 45 = 13.3 kg DM
- 来源于日粮的最大的NDF采食量 = 体重的1.2% = 7.2kg
- 来源于其他饲料的最大的NDF采食量= 7.2 6 = 1.2 kg
- 精补料的最大采食量(15% NDF) = 1.2 x 100 ÷15 = 8 kg DM
- 潜在的日粮干物质采食量= 13.3 + 8 = 21.3 kg DM
- 日粮的总NDF = 7.2 ÷ 21.2 x 100% = 33.8% = 很好

例如: 600 kg体重奶牛采食牧草(70% NDF) 和精补料(15% NDF)

- 来源于粗饲料的最大的NDF采食量= 体重的1= 6 kg
- 最大牧草采食量(70% NDF)= 6 x 100 ÷ 70 = 8.6 kg DM
- 来源于日粮的最大的NDF的采食量= 体重的1.2% = 7.2 kg
- 来源于粗饲料以外的最大的NDF采食量 = 7.2 6 = 1.2 kg
- 最大的精补料采食量(15% NDF)= 1.2 x 100 ÷ 15 = 8 kg DM
- 潜在的日粮的干物质采食量= 8.6 + 8 = 16.6 kg DM
- 总日粮的NDF = 7.2 ÷ 16.6 x 100% = 43.3% = 太高了

产犊间隔与平均产量的日期关系

- 例如:产犊间隔13个月,2个月的干奶期,那么产奶时间为13-2=11个月*30.5天/月=335.5天,因为每个月产犊数量基本相同,那么泌乳期中平均产奶量的日期为335.5*0.5=168天;
- 如果产犊间隔为14.2个月,那么14.2-2=12.2*30.5=372.1
 天,372.1*0.5=186天
- 186-168=18天
- 仅仅18天会带来什么?

18天会带来什么?

- 168天的奶牛正处于泌乳中期,假设这时期奶牛的产奶量为25公斤;
- 一个牛群峰值后的产奶量每个月下降一般为10%,那么168天到198天的时间内会下降2.5公斤,那么第186天时的产奶量为18/30.5=59%,即2.5*0.59=1.5公斤,那么平均每天的产奶量为25-1.5=23.5公斤。
- 如果该牛群有100头牛,那么每天的交奶量就由100*25=2500降到
 23.5*100=2350公斤,即150公斤,每公斤奶3元*150公斤=450元,那
 么每个月就会损失13725元。
- 对于单一一个奶牛来说,泌乳早期的奶量很重要,对于一群牛来说, 平均产奶量的日期越早,整个牛群的产奶量越高。

解决奶牛高产的问题关键

- 干物质采食量最大化
- 基础的日粮平衡
- 降低疾病发病率
- 不同生产阶段合适的体况评分
 产后60天内,每天损失1公斤体重
 产后60-120天,维持体重不变
 产后120-300天,日增重450克

一个牛场奶牛日粮例子

- 玉米 5.5公斤
- 豆粕 2.5公斤
- 棉粕 2公斤
- 预混料 0.5公斤
- 全株青贮 20公斤
- 羊草 2.5公斤
- 苜蓿 3公斤
- 啤酒糟 8公斤

LACTATING: BW=605 kg,Growth=0.06 kg/d,Milk=30.00 kg,Fat=3.80%,CP=3.16%						
CNCPS	Amino Acids	MinVit 1	Met E & P P & E [iet Summar	y Prot Pools Carb Pools	Carb Ferm
Cost (5)	0.00	IOF (\$)	0.00		
DMI (k	g/d)	20.3	Model	19.9	% Model	102.1
ME Bal	(mCal)	0.8	CP (%)	17.3	NDF (%)	38.2
MP Bal	(g)	4.3	RUP (% CP)	37.7	ForageNDF (% NDF)	71.3
NP / M	P (%)	64.8	LCFA (%) 2.9 ForageNDF (% D		ForageNDF (% DM)	27.2
BactMF	P (% MP)	52.4	EE (%)	3.4	peNDF (%)	30.4
Rumer	N Balance		200 	1 - 1	Lignin (%)	4.6
Pept (g	3)	104	Pept & NH3 (g)	105	NFC (%)	36.4
% rqd			% rqd	134	Sil Acids (%)	1.6
Amino	Acid Balanc	e			Sugar (%)	3.9
Met (g)	3.4	Lys (g)	7.2	Starch (%)	26.0
Met (% rqd) 10:		109	Lys (% rqd)	106	Sol Fiber (%)	4.9
Met (%	Met (% mp) 1.97		Lys (% mp)	6.24	Lys:Met	3.16:1
Possib	le productio	n due to M	ME and MP			
	Milk(kg)	Fat (%)	CP (%)	Milk(kg)	Fat (%)	CP (%)
Trg:	30.0	3.80	3.16	30.0	3.80	3.16
Yield Constant		stant	Composition Constant		1 200	
ME:	30.0	n/a	n/a	30.7	3.80	n/a
MP:		n/a		30.1	3.80	3.16
Adjustments based on Rulquin AA Ratios:						
	30.0	n/a	-0.14	-1.3	3.80	3.16
n/a - E	quations no	t availabl	e			

Forage (% DM)

44.23

Ration DM (%)

46.24

实际生产性能

• 全群平均产奶量: 13公斤

初步判断

- TMR加工中存在问题
- 是否真的吃到这么多?
- 牛群应该存在繁殖障碍
- 人员是否波动比较大
- 是否爆发过疫病?
- 检查产前程序
- 日粮配方不是简单的数值计算

奶牛关键130天,解决健康、 高产、稳产、抗应激

• 产前40天

• 产后90天(产犊一产后15天、产后16天一产后90天)

激情迈上创业新征途 共同创造2020新辉煌

谢

谢